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I INTRODUCTION

This report evaluates the capabilities of a new class of image-

processing systems known generically as video stream processors (VSPs).

VSPs are an outgrowth of image display technology; image data froi the

display memory are streamed at video rates through a digital-processing

unit and back to memory for subsequent display or further processing.

This architecture serially simulates a parallel-array processor and is

capable, in principle, of executing any locally parallel operation, such

as convolution and edge detection, at a fraction of the cost of a truly

parallel system. Moreover, VSP throughput can match that of current

generation parallel processors such as Staran, whose performance is

limited by I/O bottlenecks in windowing images from a secondary store.

Our evaluation begins with a general discussion of the architecture

and use of VSPs that highlights the fundamental concepts and vast

application potential of this class of machines. This discussion is

based on a hypothetical VSP design in order to avoid artificial

constraints imposed by design limitations of any particular commercial

product. The hypothetical design also serves as a standard against

which current implementations can be evaluated.

The report next summarizes our experience with the IP-5000 Image

Array Processor (manufactured by De Anza Systems, Santa Clara,

California), currently the most advanced commercially available VSP.

The IP-5000 design is critiqued in the context of the hypothetical

design, followed by a presentation of experimental results at SRI. In

summary, the IP-5000 is capable of performing many low-level operations

one to two orders of magnitude faster than conventional serial

processors, including arithmetic and logical operations on images, real-

time photometric correction of video imagery, local neighborhood

operations (such as edge detection and unsharp masking), and convolution



and correlation. However, the primitiveness of the processor and the

limited storage available for temporary results make programming very

difficult. Also, the IP-5000's memory architecture effectively
precludes propagation algorithms which are important for distance

transforms, skeletonization, and the like.

The concluding discussion analyzes these limitations and proposes
design refinements that would significantly improve the IP-5OOO's

utility.
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II BACKGROUND

The need for high-speed, low-cost computation is ubiquitous in

image processing, and especially so in cartographic applications where

both volume and resolution of imagery are typically very high.

Three types of computer organizations are currently used for high-

volume image-processing applications:

(1) Large, general-purpose serial processors, such as the
CDC 7600

(2) Parallel-array processors, such as the Goodyear Staran

(3) Video stream processors, such as the Comtal 8000 series,
Stanford Technology Corporation Model 70/F, and De Anza
Systems Model IP-5000.

The fastest available general-purpose processors can execute about

100 million instructions per second and cost about $10 million. For

many image-processing operations, significantly improved

cost/performance ratios can be realized using special-purpose

architectures.

An important class of image-processing algorithms involve simple,

local computations that are performed uniformly over an entire image

array. For such algorithms, parallel-array processors such as the

Goodyear Staran can be considerably more cost-effective than a general-

purpose processor.

Staran is a single-instruction-stream, multiple-data-stream

architecture, consisting of a conventional control unit for instruction

sequencing and decoding up to 32 array modules [I]. Each array module

consists of 256 simple processing elements that operate in parallel

under one control stream. Each processing element has 256 bits of local

storage on which it can perform arithmetic and search operations in

conjunction with global operands. The Staran installation at ETL

contains four such processor arrays and costs about $1 million.

3
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Staran can perform local neighborhood operations at least one to

two orders of magnitude faster than current generation serial

processors. For example, Staran can convolve a 256 x 256 image with a

3 x 3 mask in 0.8 second, compared with 16 seconds on a dedicated

CDC 3300 [2]. In this test, over 90 percent of Staran's execution time

was consumed by I/O overheads associated with windowing in pieces of the

image from disk. I/O overhead becomes a much less significant factor in

computations involving a large number of operations per pixel. Staran

can convolve a 1024 x 1024 image with a 13 x 13 mask in 133 seconds, a

computation estimated to take several days on the CDC machine. It thus

appears that Staran is optimally suited to medium-size neighborhood

operations involving many operations per pixel.

Recently, a third type of processor has been introduced,

specifically designed to perform local neighborhood operations

efficiently on large image arrays. Known generically as video stream

processors (VSPs), they are capable of executing many common iwage-

processing functions faster than Staran, and at a fraction of the cost.

4



III VIDEO STREAM PROCESSORS

A VSP consists essentially of a large, fast bulk memory with

sufficient capacity to store several entire images, a high-speed bus,

and one or more high-speed serial processing units. Image data are

continuously read out from the memory in a raster format and placed on

the bus. The data are streamed through a selected processing unit at

video rates (100 nanoseconds/pixel for a 512 x 512 image). The results

are then output to a video display, stored back in memory, or pipelined

to another processing unit.

Simple computations (e.g., primitive arithmetic and logical

operations) can be performed in one pass though image memory, using a

low-cost, general-purpose arithmetic logic unit (ALU). More complex

computations, such as histogramming and convolution, can be decomposed

into simple steps that are performed on successive passes. Where the

expense is warranted, many such operations can be performed in a single

pass, using special-purpose processing units and pipelining.

Although the inherent 10 MIPS serial-processing rate of a VSP is

modest by supercomputer standards, total throughput is optimized by

capitalizing on two design features: elimination of I/O b-ttlenecks by

keeping an entire image in fast memory and elimination of software

overheads associated with address indexing by delegating this function

to the memory hardware. For local neighborhood operations on images,

these two factors typically account for nearly 50 percent of total

execution time on a conventional, general-purpose computer and (as we

have seen) as much as 90 percent on Staran.

Historically, VSPs evolved from a marriage of two

technologies: raster graphics and digital processing. The earliest

raster graphics displays, such as the RAMTEK GX-100, were designed

solely for viewing digital imagery. Second-generation displays, such as

5



the Comtal 8000 series, included high-speed function memories and lookup

tables that could dynamically transform stored pixel values before

display (Figure 1). This capability allowed image enhancements (such

as contrast stretching and pseudo-coloring) to be performed in real time

under interactive control. Third-generation display systems, such as

the G.E. Image-100 and Stanford Technology 70/E [3], brought the first

real processing capabilities. Using lookup tables, combinational logic,

and output function memories, elementary arithmetic and logical

operations could be performed at video rates on corresponding pixels in

two or more images. The results could be directly displayed or fed back

to an image channel for subsequent transfer to a host computer. (See

Figure 2.) This pixel-processing capability was useful in a variety of

remote sensing applications, including change detection, spectral

ratioing, and classification. For example, a land use category could be

assigned t every pixel location by forming a weighted sum of the

corresponding pixel values in several spectral bands and then passing

the result through an output function table that mapped it into a use

category.

The above pixel processors lacked several key features required for

general image-processing operations. Most notable were:

(I) The ability to perform arbitrary arithmetic and logical
functions.

(2) The ability to shift images relative to each other and
thereby synthesize spatial neighborhood operations, such
as convolution and edge detection.

(3) The ability to accumulate results globally over an image,
as required for histograms, statistics, and plane
fitting.

(4) The ability to make processing at each point in an image
conditional on results computed at that point on a prior

pass.

In 1976 SRI proposed a conceptual design for a processor, based on

these extensions of existing raster display technology. SRI then

publicized the design at several image-processing workshops* in hopes of

* Engineering Foundation Workshop on Image Processing, Rindge, New

Hampshire, August 1976; ARPA Image Understanding Workshop, University of
Southern California, October 1976.
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interesting industry attendees in building it. A local company, De Anza

Systems, requested detailed specifications and 18 months later

demonstrated the prototype of their IP-5000 image-array processor.

Although the IP-5000 was a considerably scaled-down version of the

proposed design, it is still, in many respects, the most advanced VSP

commercially available.

In 1978 SRI acquired the first production IP-5000 for use in

Advanced Research Projects Agency (ARPA)-sponsored research on image

understanding. The Engineer Topographic Laboratories (ETL) agreed to

fund an evaluation of the system's potential for cartographic

application. We begin this evaluation with a description of the generic

VSP design proposed to De Anza and others in 1976. Our purpose is

twofold: to highlight the fundamental concepts and application

potential of this class of machines, unconstrained by design limitations

of a particular product; and to provide a standard against which the IP-

5000 and other commercial products can be compared.

A. Generic VSP Design

Our proposed VSP design has a modular architecture consisting of

memory and processors interconnected by a high-speed bus (see Figure 3).

Memory is organized as a large number of two-dimensional bit planes

that may be addressed individually to store binary arrays or in stacks

to store images. (Stacks can have arbitrary depth, providing efficient

storage for images quantized to different precisions.) Each array is

scanned in a continuous, top-bottom, left-right raster, with one pixel

available at each point in time. The memory-addressing logic allows

different offsets and sampling intervals to be specified for each array

window, so that arrays, in effect, can be scrolled and zoomed with

respect to each other. Although single-pixel access suffices for most

operations, with optional delay lines a 3 x 3 neighborhood of pixels can

be made accessible at each image location.

One port of the memory is connected via a fast bidirectional bus to

a variety of processors, as well as image input and output devices

8
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(raster display, image digitizer, etc.). The output of selected memory

planes is routed into a processor whose output may then be written back

into memory or input directly to another processor (pipelining). Memory

and processors may thus be regarded as functionally equivalent.

A second memory port is connected directly to the memory bus of a

host processor. The host loads images into VSP memory from a disk file

and controls VSP operation through either an interactive user interface

or direct subroutine calls from programs written in a high-level

language. If the host has an adequate virtual address space, it can

directly address VSP arrays as an extension of its physical memory.

Thus, high-level sequential computations performed by the host can be

efficiently intermixed with low-level parallel operations performed by

the VSP.

A number of VSP control and data registers are accessible to the

host. Control parameters that may be specified include the processor

and sources of data to be used in a computation, the destination of the

result, and the values of registers that delimit subareas of an image to

be processed. Data registers that can be accessed upon completion of a

computation include various accumulators and event counters that are

used to compile statistics over an image or record extremal values.

Some of the more important control parameters and data r~gisters are

listed in Table 1.

B. Processors

The VSP architecture just described can accommodate a wide variety

of processing modules. At one e-treme are inexpensive bit-sliced ALUs

that can synthesize arltrary arithmetic and logical functions over many

passes through an image. At the other are expensive and highly

specialized logic arrays designed to perform complex operations such as

convolution in a single pass. Three modules were proposed as the basis

of a general-purpose, image-processing facility: function generators,

lookup tables, and a general-purpose processor. Used in conjunction

with the spatial offset features of memory and the conditional

10



Table 1

CONTROL PARAMETERS ACCESSIBLE TO HOST PROCESSOR

Data Source(s): Memory planes or processors to be used as data
sources for a computation. (The number of sources
depends on the processor.)

Data Destination(s):
Memory planes, processor, D/4 converters (display).
Multiple destinations can be designated.

Memory Address Parameters:
Zoom and offset can be independently set for each
memory plane, but must be the same for both reading
and writing.

Processor: Selects processor to be used in computation.

Processor Parameters:
Initialize computations, select processing options.

Mask Planes: A register specifying a set of memory planes that are
ANDed together to form a binary mask delimiting the
area of an image to be processed.

Window Register: A set of registers specifying the coordinates of a
rectangular window, used in conjunction with the mask
planes to further constrain the area of processing.

By restricting processing to specified subimages
within a memory plane, the mask planes and window
register allow conditional processing based on
previous results.

11



processing provided by mask planes and window register, these three

modules suffice to implement most low-level, image-processing

algorithms. Special-purpose modules can then be added as needed to

optimize the performance of particular operations.

1. Function Generators

Function generators are inexpensive processing units that can

be used in lieu of memory as the source of simple spatial functions

(e.g., constants, linear ramps, sinusoids) needed in many computations.

Instead of storing such functions as images, they can be generated on

the fly as functions of the current X,Y image coordinates. Binary masks

(e.g., straight lines, circles, filled polygons) can be similarly

generated, without wasting expensive storage.

2. Lookup Tables [Stack . Table => Stack]

Lookup tables provide a fast, inexpensive way to implement

local unary image functions such as logarithmic scaling, multiplication

by a constant, and thresholding. A table is first initialized by

storing the desired output value corresponding to each input value.

During execution, pixel values streaming through the processor are used

as indices to select replacement values from the table. Lookup tables

must have 512 addressable slots (9 bits) to be able to scale x,y

coordinate values. These tables can be initialized by the host

processor in the vertical retrace interval between frames.

3. General-Purpose Processor

An essential requirement is a processing unit that can perform

arithmetic and logical operations on pixels from two source images (or

function generators) as they stream through at video rates.

The architecture of the proposed processor is sketched in

Figure 4, and its capabilities are outlined in Table 2. Arithmetic,

logical, and test operations are performed at video rates on data from

two image stacks (up to 32 bits deep) or from an image stack and an

12
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Table 2

SUMMARY OF PROCESS FUNCTIONS

Logic Operations [Bit Plane(s) A • Bit Plane(s) B => Bit Plane(s) C]

A, NOT A, B, NOT B, A AND B, A NAND B,
A OR B, A NOR B, A EXOR B

Logical Shift
SHIFT LEFT/RIGHT (n) filling with zeros or ones,
ROTATE LEFT/RIGHT (n) with wrap-around

Arithmetic Operations [Stack . Stack => Stack; Stack . Register =>
Stack]

A+B, A-B, A*B, A/B,
ASHIFT A(2^n), MIN (A,B), MAX(A,B), ABS(A) & overflow detection

(Real-time multiplication and division are limited to 9-bit
numbers: 9 bits are required to handle x,y coordinate values;
two 9-bit numbers can be multiplied and the result accumulated
in a 32-bit sum in I frame time.)

Test [Stack => Bit Plane; Register => Bit Plane]
ZERO A, NZERO A, POSITIVE A, NEGATIVE A; same for B.

Compare [Stack . Stack => Bit Pline; Stack . Register => Bit Plane;
Register . Register => Bit Plane]

EQUAL, NEQUAL, GREATER, LESS, >=, <= .

(Test and compare operations; allow branching by selecting
which of two operations to perform at each pixel location.)

14



internal register. The result can then be logically shifted up to 32

bits, masked, and stored back in an image stack or a register. 256 32-

bit registers are provided for compiling global sums required in

histograms, moments, and similar computations. Standaid 8-bit pixel

values can be used to index the registers in operations such as

histogram compilation.

15
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IV USE OF VSPs

A VSP can be used in an image-processing system in two basic

ways: as an extension of a host CPU's physical memory and as a

peripheral processor for offloading low-level operations. The first use

provides substantial speedups in conventional sequential algorithms

because entire images can be stored in main memory, eliminating disk

latencies. The second use provides additional speedups for pseudo-

parallel operations and is our main interest here. Since many

algorithms involve both serial and parallel aspects, the ability to

intermix processing by the host and by VSP modules on the same data

arrays is a very important feature.

A. General Programming Considerations

Before discussing specific algorithms, we introduce a few general

considerations that arise in programming this class of machine.

A VSP can be viewed as a serial simulation of a single-instruction,

multiple-data stream (SIMD) parallel-array processor, such as Staran.

On each pass through an image (iteration), the same computation is

performed at each pixel location, except where inhibited by a mask

array. Each computation has access only to datl in a local window

centered on the currently addressed pixel (typically the eight

immediately adjacent neighbors) and must be completed within the

available time window. Temporary storage is available at each pixel

location via auxiliary image stacks.

Alternatively, a VSP can be viewed as a conventional serial

computer, operating on sequential streams of pixels. Programming is

simplified, however, because addressing loops are eliminated. The input

data registers will always contain the pixel values at the current

coordinates of the source images; similarly, the contents of the output

16



registers will always be deposited at the appropriate coordinates of the

destination images. Thus, a simple three-line loop of the form Load A,

Add B, Store C suffices to add two images and store the result in a

third image. ThF input and output registers, in effect, act as moving

windows over images that are being streamed past them.

From either view, VSP programming involves computations on array

operands. The computations must be partitioned into a sequence of

steps, each of which can be performed on local windows within a 100-nsec

interval. In the following programming examples, we shall assume that

word and register sizes are sufficient to avoid problems of precision

and overflow, and also that adequate image memory is available for

storing temporary results. Such considerations can greatly complicate

programming and cannot be taken for granted in practical

implementations.

B. VSP Implementstions of' Common Image-Processing Algorithms

What class of image-processing algorithms are suitable for VSP

implementation? Generally speaking, the answer is any function that can

be implemented as a local iterative or pseudo-parallel computation.

This class includes many of the most commonly used low-level operations

for tasks, such as image smoothing, edge enhancement, feature

extraction, and feature classification, as well as some computationally

intensive parts of higher-level operations, such as region analysis and

relaxation labeling. It exclides operations that require random memory

access and/or complex local decisionmaking, such as edge tracking,

geometric warping, and object recognition. Such operations can be

implemented more efficiently on the host computer, using the VSP as bulk

memory. Also excluded are unitary transforms (e.g., Fourier, Hadamard,

Karhunen-Loeve, etc.), at least in frequency bands that require the

convolution of two full-size images. Such transforms are best handled

by special-purpose array processors that can share memory with the VSP.

Based on our own familiarity with the field, an extensive

literature survey, and discussions with ETL personnel, we have compiled

17
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a representative list of functions that meet the criteria for effective

VSP implementation and are also of interest to the cartographic and

image-understanding communities (see Table 3). The following sections

outline implementations of these selected functions on the generic

processor described in the previous section.

1. Primitive Image I/O Functions

a. Image Digitization

The high-speed A/D converter connected to the memory bus

allows images from a television camera or other scanning device to be

digitized at video rates and stored in an image array. Alternatively,

the output of the A/D can be routed through the ALU processor and added

to preceding frames in real time to reduce noise.

b. Image Copy

An image in one stack can be copied by routing it through

the ALU and storing it in (one or more) other stacks.

c. Spatial Image Transforms

The ability to shift and magnify an image is essential

for both processing and display. Images are shifted horizontally or

vertically (with truncation or wraparound) by introducing appropriate

offsets in the memory address counters. Zooming is accomplished by

dividing address counters by powers of two and replicating pixels at

intermediate screen locations. The resulting blocky appearance at high

magnification can, if necessary, be improved with special-purpose

hardware that performs bilinear or cubic-spline brightness interpolation

in real time.

Shift and zoom can be altered dynamically on each

iteration, interactively or under program control. This capability can

be used to increase the effective number of image planes at the cost of

resolution. A 512 x 512 array can be used, for example, to store four
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Table 3

SUITABLE VSP OPERATIONS

Primitive Image I/O Functions:
Image digitization
Image copy, scroll, zoom
Graphics overlays
Gray-scale mapping (pseudo color)

Primitive Pixel Operations:
Logical (AND/OR)
Arithmetic

Conditional
compare two images
test image (greater, less, equal to a constant)

Arithmetic, logic, and conditional operations, together with
image copy and scroll, are sufficient to synthesize any
image-processing function, given sufficient time and memory.

Statistics:
Histogramming
Max, min, sum, avg, count of masked points
Moments (sum of 1, Z, X, Y, X2, Y2, XY, etc.) over image for

masked points
Line and plane fitting
Statistics of texture operations (directed edge density)
Hough Transform (broken line detection)

Classification:
Ratioing of spectral bands (to normalize illumination)
Linear combination of images
Nearest neighbor classification of linear comb-'nation

(These three steps constitute classical LANDSA2 processing.)

Local Neighborhood Operations:
Binary pattern transformations

noise cleaning, gap filling, thinning, thickening
Arithmetic transforms

averaging, median filtering, simple edge detection,
and texture operators (e.g., Sobel)
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Convolution, Correlation:
Weighted averaging, spatial filtering, template matching
Relaxation via correlation
Complex edge detection (e.g., Hueckel)

Propagation Algorithms:
Distance transforms (chamfering)
Skeletonization, shape abstraction
Connected component labeling (regions, edges)
Association algorithms (sketch completion)

Image Generation:
Binary mask generation (e.g., lines, circles, boxes)
Shaded surface generation
Hidden surface suppression
Image masking, merging, mosaicking (insertion)

Unitary Transforms:
Fourier, Hadamard, Karhunen-Loeve

(,erformed by peripheral-array processor that shares
memory with VSP)

Transform domain filtering
(convolution by multiplication of Fourier-transformed

images)

Real-Time Imaging Processing:

Image Enhancement
Photometric compensation

scale, offset, trend
shading correction, time averaging (to reduce noise)
gray-scale statistics
histogram modification (contrast stretching,
compression)

Accommodation
control of focus, iris

Motion Analysis
Motion, change detection (difference and threshold)
Velocity map
Centroid tracker

Hybrid Electro-Optical Processing
Unsharp masking (defocus and subtract)
Moving edge detection (subtract sequential images)
Correlation peak detector
Normalized Fourier signatures (a la Landeris and Stanley)
Feature extraction for patterned lighting

(e.g., light stripe range finder)
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VSP Applications in IU Systems:

Scene partitioning (e.g., Ohlander region finder)
Interactive overlay generation
Road tracing

applying Duda road operator
chamfer (mask generation)
cost propagation (min cost determination)

Map matching
feature extraction (convolution, edge detection)
computation of distance arrays (chamfering)
compution of average match error from chamfer array
scores for flexible template matching

Intrinsic image reconstruction

local smoothing, differentiation, reintegration
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256 x 256 images; each subimage would then be centered and zoomed to

full size, prior to use. Simple real-time animations can be performed

without excessive storage requirements by storing multiple views of an

object in different subimages and accessing a different subimage on each

iteration.

d. Gray-Scale Mapping

Gray-scale mapping and pseudo-coloring are performed by

passing the output of an image memory through an appropriately

initialized data transformation table. The transformed values can be

stored in an image memory or used directly for display or further

processing.

e. Overlays

The data transformation tables provide great flexibility

in generating graphical overlays for superposition on displayed images.

Any bit position of an image can be mapped into an arbitrarily colored,

high-brightness overlay, using the transformation tables. Thus, an 8-

bit image can specify up to eight independent overlay planes.

Alternatively, a pixel can be interpreted as specifying one of 256

categories, each of which can be independently mapped into an overlay

color.

2. Primitive Pixel Operations

Primitive arithmetic and logical operations on individual

rixels or corresponding pixels from two images are performed using the

ALU and lookup tables. Addition, subtraction, and simple logical

functions (e.g., AND, OR) are performed in the ALU in one frame time.

Multiplication and division can also be performed in a frame time if the

ALU contains a high-speed multiplier chip; in the absence of such a

chip, 8-bit multiplication can be synthesized in multiple passes with

shifts and adds. Regardless, multiplication by a constant can be done

in one pass using a lookup table, and multiplication/division by a power

of two can be performed using the ALU logical shifter.
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All of the above computations can be restricted to regions of

an image designated by a mask array. Furthermore, the ALU can be

programmed to execute one of two alternative operations at each pixel,

based on the results of a test or comparison operation performed in the

same iteration. Examples of such conditional operations appear below.

3. Statistics

Statistics, moments, and histograms play a vital role in many

image-processing tasks. Statistics and histograms are used to determine

intensity tranjformations that optimize display, as well as for texture

classification. Moments are used to characterize the shapes of binary

blobs, to fit lines and curves to binary data points, and to fit

surfaces to gray-level image data.

Simple statistics such as the max, min, sum, avg, or count of

a set of masked points can be computed by the ALU in a single frame time

using registers to compile sums or extreme values. Simple moments of

the point set (e.g., sigma x, sigma xy, and sigma x2 ), as well as

intensity-weighted moments (e.g., sigma Z, sigma Zx), can be similarly

computed using multiply and adds, where one or both operands are pixel

coordinates (provided by a function generator). Histograms can be

compiled for a set of masked image points by using pixel values as

indices to select which ALU register to increment.

More sophisticated statistics can be compiled on multiple

passes. Statistics of local edge operators (see below), such as

histograms of edge strength and direction, are useful as texture

statistics. Histograms of projections of edge points onto lines are

useful for detection of long (possibly broken), straight lines. One

well-known technique, the Hough Transform, can be implemented as

follows:

First, an array of edge strengths is obtained by convolving
an image with an edge operator. Second, each edge point

(x, y) is projected onto a line through the origin with
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slope t, by computing the function,

p = x * cos t + y * sin t

(Multiplication by constants cos t and sin t can be performed
in lookup tables followed by summation in the ALU.)

P is used as an index to select an ALU register, which is
then incremented by the edge strength at (x, y). A strong
edge perpendicular to line t will thus cause a high value
to be accumulated in a particular register.

The above projection process is then repeated on subsequent
iterations for different slopes. (In time-critical
applications, a special-purpose processor with a two-
dimensional array of accumulators can be used to compute
Hough Transforms in a single pass.)

4. Image Enhancement/Classification

VSP architecture is ideal for performing real-time, continuous

image enhancement. Raw video input can be routed through the ALU, where

shading correction can be performed (by subtracting an image of a blank

field) and noise reduced (by time averaging with previous frames).

Video can also be routed through lookup tables, where arbitrary scale

and offset corrections can be applied, including those necessary to

effect histogram equalization.

Conventional multispectral classification involves similar

processing. The ALU can be used to compute images that are ratios of

spectral bands and to form images that are linear combinations of such

ratios. Lookup tables can then classify the resulting sums into

previously established categories, using any number of decision rules,

such as nearest neighbor or piecewise-linear discriminant.

5. Local Transforms

The previous sections all dealt with operations involving a

single pixel in each operand image. Another large class of operations

involve local neighborhoods of pixels (e.g., the 3 x 3 area surrounding

each image location).
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Binary pattern transforms operate on a Boolean array and

replace each bit by a new value based on the surrounding pattern of bits

in a 3 x 3 neighborhood. Such pattern transformations have long been

used on serial computers to implement iterative binary image-processing

operations, such as line thinning and thickening, gap filling, and

isolated point noise suppression [41.

An efficient way to implement binary transforms on a VSP is

first to convert the binary array into a 9-bit image stack, each pixel

encoding the nine surrounding bits at the corresponding location in the

original binary array. The encoded image is then passed through a

lookup table that transforms it back into a binary array, replacing each

surround with an appropriate Boolean value for the central bit at that

image location.

Transforming 3 x 3 binary spatial patterns into an equivalent

gray-valued image can be accomplished in eight passes through the ALU;

on each pass, the binary array is spatially shifted (+1 or -1 in x

and/or y) to pick up a bit value, which is then stored in the

appropriate bit plane of the output array stack. The original binary

image serves as the ninth plane. Passing the resulting image through

the lookup table takes another pass. Thus, binary neighborhood

transforms can be performed in nine frame times (270 msec for a

512 x 512 image) and iterative transforms in nine frame times/iteration.

Arithmetic neighborhood transforms operate on an image stack

and replace each pixel with the result of a computation performed on the

surrounding 3 x 3 neighborhood. These transforms are commonly used for

spatial noise reduction (averaging), edge and texture feature detection,

and filtering (e.g., unsharp masking).

Arithmetic transforms are implemented by passing the original

image and spatially offset versions of it through the ALU. A simple

transform such as replacing each pixel by the average of its neighbors

takes nine passes. First, an 11-bit output image is initialized to

zero. On each of the next eight passes, the input image is shifted one

unit vertically and/or horizontally and added to the output image. On
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the ninth pass, the output image is divided by eight (e.g., by right

shifting each pixel three bits). Other transforms are similarly

implemented. For example, replacing each pixel by the max or min of

surrounding pixels can be accomplished by using the ALU first to copy

the input image into an output image, and then to compare the copy with

shifted versions of the original. The max or min resulting from each

comparison is stored back in the output array. Thus, aftei eight

passes, each pixel in the output image will contain the max or min value

of each corresponding 3 x 3 neighborhood in the original image.

As a final example, we shall sketch a VSP implementation of a

Sobel edge operator. Sobel's operator is defined on a 3 x 3 window,

a b c
d e f
g h i

as
S = H + V where,

H = ABS ((a + 2b + c)-(g + 2h + i))
V = ABS ((c + 2f + i)-(a + 2d + g))

Ignoring minor improvements in efficiency, an obvious way of computing

this function is to compute H and V independently at each point and then

add the two images holding these partial results. To compute H, a

lookup table is first initialized to multiply an image by the constant

2. The term 2f is computed by spatially shifting the input image left,

passing it through the table, and storing the result in an output image

serving as an accumulator. Terms c and i are added to 2f on the next

two passes, by appropriately shifting the input image with respect to

the accumulator image. On the next three passes, terms a, 2d, and g are

obtained and subtracted from the sum, again making appropriate use of

spatial offsets and the lookup table. To compute absolute values, the

accumulated sum is again passed through the ALU, which tests the sign

bit of each pixel and complements it if negative. Computation of V is

performed analogously to H, and the final summing of H and V is

straightforward.
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Local transforms are good candidates for high-speed

implementation with special-purpose hardware. Computational structures

such as adder and logic trees can be used in conjunction with 3 x 3

memory access windows to perform many local transforms in a single pass.

6. Convolution and Correlation

Convolution and correlation are generalizations of local

arithmetic transforms to larger neighborhoods. In essence, the value at

each point in an image is replaced by a weighted sum of surrounding

pixel values, with the weights specified by a local operator, subimage,

or mask. These operations are widely used in image processing for

spatial filtering, template matching, sophisticated edge detection

(e.g., the Hueckel operator), stereo correspondence, relaxation

updating, and many other functions. They are also computationally very

expensive; convolving a 1,000 x 1,000 image with a 32 x 32 mask involves

nearly a billion multiplies (about three 'ours on a modern general-

purpose computer).

Like the Sobel operator, convolution can be implemented

iteratively by passing appropriately shifted versions of the input image

through a lookup table and then summing the resulting weighted pixel

values in an output "accumulator" image. One iteration/mask point is

required, at one frame time/iteration. Thus, assuming a 30-millisecond

frame rate, an entire image can be convolved with a 32 x 32 mask in

about 30 seconds, nearly 400 times as fast as on a general-purpose

machine.

Relaxation updating of edge strengths can be implemented by

iteratively convolving an edge array with an array of correlation

coefficients and passing the resulting array of weighted sums through a

nonlinear function implemented in a lookup table. After each iteration,

convergence is tested in one pass through the ALU, by comparing the

array of updated values, pixel by pixel, with the results of the

previous iteration; the maximum difference is retained in an accumulator

and used as a termination condition.
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7. Propagation Algorithms

Propagation algorithms are a class of local transforms that

stores results back into the original input image for use by subsequent

computations in the same iteration. Information thus propagates top-

bottom and left-right in the direction of the raster. Distance

transforms, skeletonization, and connectivity analysis are examples of

algorithms commonly implemented by propagation techniques.

A distance transform starts with an array of distinguished

feature points and produces an output array whose numbers represent

distances to the nearest feature point. Distance arrays are important

for shape matching and map matching [5], for shape abstraction

(skeletonization), for sketching in broken boundaries F6], for

designating points within a desired vicinity of some initial set, and

for many other functions.

Propagation algorithms, by definition, require access to a

neighborhood of pixels at each image location. Assuming access to a

3 x 3 neighborhood, a distance array corresponding to a given feature

array can be generated in two passes [7 and 8]. The input feature

array, (F[i,j] i,j=1...n), is initially two-valued: 0 for feature

points and 2n otherwise. A forward pass (top-bottom, left-right)

modifies the feature array as follows:

FOR i 2 STEP I UNTIL N DO
FOR j 2 STEP 1 UNTIL N DO

Ffi,_J] MINIMUM(F[i,j], (F[i-l,j]+2),
- (Fi-1,j-1]+3), (F[i,j-1]+2),

(F~i+1,j-1]+3));

A backward pass (bottom-top, right-left) then completes the operation:

FOR i (N-1) STEP -1 UNTIL I DO
FOR 0 (N-i) STEP -I UNTIL I DO

Fri,-] MINIMUM(F[i jj, (F[i-1,j] 2),

- (F[i+1,j+1 +3), (F[i,j+1]+2),
(F[i-l,j+l1+3));

The incremental distance values of 2 and 3 provide relative distances

that approximate the Euclidean distances i and the square root of 2.
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To generate the skeleton of a shape, one would first generate

a distance transform from its boundary points and then pass the

resulting distance array through a local arithmetic transform that flags

points that are local maxima.

In connectivity analysis, the problem is to identify sets of

adjacent pixels with the same value and assign each set a unique label.

This operation can be used, for example, in remote sensing to form

spatially connected regions following pixel classification. It is

frequently used in binary image processing to analyze spatial

characteristics of blobs (e.g., size, shape), as well as to connect

adjacent edge points into contiguous lines.

Connectivity labeling involves two arrays--the input array and

a label array--and can be performed in two passes through the ALU. In

the first pass, the value at each point, b, is compared with the values

of previously labeled neighbors, c and a, as shown below:

a
c b

If the value at b is the same as the value at a, then b is

assigned the same label as a. Otherwise, if b has the same value as c,

it is assigned c's label. If b has a different value than both its

neighbors, a label count is incremented and b assigned the next number.

The second pass deals with a complication that arises when b

has the same value as both a and c, but these pixels had previously been

assigned distinct labels. This can happen, for example, in a U-shaped

figure, where the top-down scan causes each arm initially to receive

distinct labels. Such inconsistencies are detected on the second pass

by testing each location to determine whether [value (b) = value(c)] and

[label(c) =/ label (a)]. Where this condition holds, label c is equated

to label b in a lookup table. The label image is subsequently accessed

through this table, which dynamically transforms all equivalent labels

into a common number.
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After performing connectivity analysis, previously described

techniques can be applied to the label array to determine the largest or

smallest region and statistics on region size. Using the label array a3

a mask, moments and other shape features can be computed for any

designated region (e.g., the largest one) for recognition purposes.

Many generalizations of distance transforms and connectivity-

lebeling algorithms can be implemented on a VSP. Quam has described a

distance transform that computes an excellent approximation to true

Euclidean distance, by propagating the coordinates of the closest

feature point [9]. The algorithm also permits more reliable

skeletonization, using as a criterion points at which the direction to

the nearest boundary point is discontinuous. Fischler has described a

generalization of connectivity analysis that assigns a common label to

all similar points that are not necessarily contiguous, but are within a

specified neighborhood [10]. He has also developed symbolic distance

transforms that propagate labels, rather than distances, and are useful

for functions such as sketching in a broken boundary and producing

skeletons that are resistant to local boundary perturbations [6].

Propagation algorithms impose strict constraints on VSP

design. Unlike local transforms, which are pseudo-parallel, propagation

requires that the value of point i be available before processing point

i+1. A consequence is that complex operations can no longer be

synthesized on multiple passes. (Processing of point 2 would have to

wait k passes until a value of point I was determined, processing of

point 3 would have to wait another k passes for the value of point 2,

and so on, thus defeating the pseudo-parallel ncture of a VSP.) In

computing a distance transform, for example, the ALU must be fast enough

to find the minimum of 5 points in an L-shaped window and store back the

result, before the scan progresses to the next pixel location. A

special-purpose comparator tree must be used if the general-purpose ALIT

cannot meet this requirement.

A second requirement is the ability to scan the image array in

both forward (top-down, left-right) and reverse (bottom-top, right-left)
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rasters. Some memory architectures can be scanned in a reverse raster

simply by running the memory address counters backwards. Where a

reverse scan is not possible (e.g., because the memory interleaving used

to obtain video bandwidths precludes it), then the image resulting from

the forward pass must be serially inverted in the host computer. The

inverted image is then copied back into the VSP, which implements the

backward pass.

8. Image Generation

Synthetically generated images are widely used in image

processing as templates and masks, as well as for graphical presentation

of results. A VSP can perform many of the image generation functions of

expensive, special-purpose display processors, at comparable speeds.

A variety of binary masks can be readily generated. Straieht

lines, for example, can be drawn in one frame time, by passing the x and

y coordinate values of each image location through the AiT and setting

bits in a binary output array wherever a desired linear relation Ax+Py+C

holds. Areas within a specified distance of the line can be masked off

by applying a distance transform to the binary array and then passing

the resulting distance image through a lookup table that thresholds at

the appropriate distance. Circles can be drawn at specified locations

and radius, by initializing center points in a binary array and running

a distance transform. The resulting distance array is passed through a

lookup table that can be initialized to mark bits at locations where

distance equals the desired radius. (A filled-in circle can be

generated by initializing the table to mark locations where distance is

less than or equal to the desired radius.)

Gray-level images can be masked, merged, and mosaicked to

obtain useful image products. Image masking can be accomplished by

selectively copying an image into a blank array, under control of a mask

array. (Writing is inhibited where the mask is zero.) Similarly,

images can be mosaicked by selectively copying one image into another

under control of a mask. Two images can be merged, for example, by
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passing both through the ALU and outputting the larger pixel value at

each point. Despite their simplicity, such image manipulations are

difficult or impossible to perform on conventional image-display

processors, due to the lack of test and compare operations.

Shaded surfaces can be synthesized from an array of surface

normals (e.g., a terrain map), using Horn's concept of a reflectance map

implemented in a lookup table [11]. The lookup table maps each

orientation into an appropriate brightness, based on the angle of

incidence for an ass-med light source. Given surface descriptions in

the form of range arrays, a three-dimensional scene can be synthesized

as follows: first, the range array for surface one is differentiated

(e.g., by convolving it with an edge mask) to obtain an orientation

array; the orientation array is transformed through a reflectance map to

compute a brightness array; orientations and. brightnesses are then

determined for surface 2; and a test is made to determine locations

where range (2) < range (1). Where this condition holds, brightness (2)

replaces brightness (1) in the brightness array, and range (2) replaces

range (1) in the range array. In this fashion, range and brightness

arrays can be synthesized for a complex scene with multiple occluding

surfaces, in a time linearly proportional to the number of surfaces.

9. Real-Time Image Processing

VSPs, operating at video frame rates, can perform a variety of

processing on real-time continuous imagery. In such applications, a

current frame from the A/D converter is processed in conjunctior with

previous frames stored in memory.

An important class of real-time processing applications

concerns image enhancement. Two such techniques, real-time frame

averaging for noise reduction and real-time photometric compensation

(scale, offset, and camera shading), have already been described. Real-

time camera control provides other opportunities [12]. Brightness

statistics can be computed on incoming imagery and used to control

camera iris, electronic sensitivity, and digitizer range. Edges can be
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rapidly extracted (e.g., by subtracting an image from a spatially

shifted version of itself), summed, and used as a sensitive criterion

for optimizing camera focus.

A second important class of real-time processing involves

analyzing imagery of moving scenes. Simple motion detection can be

implemented by subtracting consecutive frames in the ALU and

thresholding the result. Monitoring for changes or anomalies is

similarly accomplished by comparing the current image with a stored

prototype. Real-time centroid tracking can be performed by thresholding

the incoming image in a lookup table and then computing the center of

mass of the resulting blob as described in the section on statistics.

For sufficiently slow movement, correlation tracking of distinguished

features (e.g., corners) can also be implemented.

A velocity map of the image can be determined from local

spatial and temporal gradients (computed by comparing shifted and

consecutive images, respectively). Major moving regions in the image

can then be identified from global statistics on this map accumulated in

the ALU [13].

A third important class of real-time applications involves

hybrid electro-optical processing. Optical-processing techniques

provide a cost-effective solution to many image-processing problems,

particularly those involving spatial filtering. Digital processing

provides complementary capabilities in performing nonlinear operations

and in interpreting results. The real-time capabilities of a VSP are

well matched to the instantaneous response of optical systems.

A simple example of combined optical and VSP processing is

unsharp masking, which can be implemented by subtracting a defocused

(i.e., optically low-passed) image from a focused one. A second example

in-olves optical-matched filtering; an image can be correlated against

an array containing multiple templates, such as letters of the alphabet.

The result is a correlation array with brightness peaks at locations

corresponding to masks with good matches in the image [14]. This array

can be processed in real time by a VSP to determine the locations of
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correlation peaks, and thus the identities of masks with high

correlation scores. See Gara [15] for related applications in

industrial automation.

Fourier image filtering, as proposed by Lendaris and )tanley

[16], provides a somewhat more sophisticated example of using a VSP to

interpret the results of optical processing. Here, a Fourier transform

of an image is obtained using coherent optics and the resulting array

input through a video camera to the VSP. Scale and rotation invariant

signatures of the image can then be obtained by summing the energy,

respectively, in concentric rings about the center of the image and in

pie-shaped wedges emanating from the center. These sums are easily

obtained in a single pass; an image is first initialized with numbers

that indicate which accumulator to increment when energy is detected at

the corresponding location in the Fourier array. This mask array and

the Fourier array are then passed through the ALU, and the signature

accumulated in a fashion analogous to the computation of histograms.

Agin [17] has described the use of a triangulation range

finder using a camera and a stripe of light. A VSP can detect the light

stripe in the image (using thresholding) and do a least-squares fit (as

described under statistical computations), all in a single pass. The

resulting fit can be used to determine planar surfaces and for

computation of range values.

C. Image-Understanding Techniques

We hope the foregoing sections have conveyed the wealth of

possibilities for exploiting VSPs in low-level image processing. VSPs

also have a role in expediting computationally intensive parts of

higher-level, "image-understanding" (IU) algorithms. We have already

suggested how a VSP could be used in such IU operations as relaxation

labeling and skeletonization. In this section, we present three

representative examples of how a VSP could be used in conjunction with a

conventional serial computer to implement IU techniques.
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1. Segmentation

Partitioning an image into homogeneous regions is an important

step in many image-matching and object-recognition methods. One of the

most effective approaches for partitioning complex images is the

recursive decomposition algorithm developed at Carnegie-Mellon by Ron

Ohlander [18]. Ohlander's input was three image arrays representing

scene luminescence through red, green, and blue filters. His output was

an array of region numbers suitable for input to a connectivity analysis

routine. Five major processing steps were involved.

(1) Compute standard color coordinate transformations (X,Y,Z;
hue, luminescence, saturation, etc.) by linearly
combining the input images.

(2) Compute histograms of the original and transformed
arrays.

(3) Determine the histogram with the most bimodal character.

(4) Partition the image into two exclusive classes
corresponding to these dominant modes.

(5) Recursively partition the image by repeating Steps 2-5
for each partition, until the histogram for any partition
is unimodal.

It should be obvious that all steps except Step 3 are directly

implementable on a VSP. Recursive partitioning, in particular, is

accomplished using a lookup table to assign new region numbers

consistent with bimodal partitioning, and then using the resulting

region label array as a mask to limit the set of pixels considered in

subsequent histogram compilations. Up to 512 distinct regions can be

handled, limited by the size of the lookup tables.

On large images, a conventional implementation of Ohlander's

algorithm can be very time-consuming. The original version of the

program running on a PDP-1O took nearly a week of overnight batch

processing to segment a single 600 x 800 image. Thus, the speedups

obtAinable with a VSP are very significant.
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2. Interactive Generation of Symbolic Overlays

A cartographic problem closely related to general segmentation

is that of producing symbolic overlays that denote areas of an image

containing some feature of interest (e.g., water, vegetation, sand,

etc.). It has been observed [19] that while completely automated

overlay generation is beyond the state of the art, an interactive

refinement process can significantly reduce the amount of labor

involved. The basic approach, as explicated in 1191, involves using

graphical interaction (e.g., light pen) to indicate a few examples and

counter-examples of the desired feature in an image. Feature detectors

(brightness, color, texture operators) are then applied in these regions

and a discrimination criterion devised (automatically or manually). The

operators and discrimination criterion can then be applied to the whole

image (and neighboring images of similar terrain) to produce detailed

overlays quickly.

Once again, all the basic steps in this approach, except the

formulation of a decision criterion, are candidates for VSP

implementation: generating binary masks corresponding to manually

encircled regions, applying operators to the masked regions, and

classifying pixels based on arithmetic and logical combinations of

operator responses. Similar approaches to overlay production have been

implemented previously using analog video technology and pixel-oriented

display processors. In both cases, generality was limited to features

that could be discriminated by thresholding linear combinations of point

attributes (e.g., brightness in different spectral bands). With VSPs,

classification can be based on spatial features such as texture density

and blob shape, affording significant extensions in the range of

features that can be discriminated. While such operators can be

implemented on conventional computers, the speed of a VSP is essential

for the interactive nature of this application.

An example of interactive overlay generation using the De Anza

processor is presented in a following section.
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3. Interactive Road Tracing

The interactive road-tracing algorithm developed under this

contract is an excellent candidate for VSP implementation [20]. The

major steps are:

(1) Interactive guideline specification.

(2) Generation of a search mask surrounding the guideline.

(3) Application of road operators within the masked area.

(4) Iterative computation of path scores based on local road
strength.

(5) Tracing the optimal path between designated start and end
points.

The first three steps make direct use of capabilities

discussed in earlier sections. The computation of path scores starts

with an array containing high cost values everywhere except at the

starting point of the road, where cost is set to zero. The cost at each

point is then iteratively updated to be the minimum of its present value

or the cost of any surrounding point plus the incremental cost

associated with the road score to that point. This iterative updating

can be implemented either as a relaxation-updating algorithm or a

propagation algorithm. Even optimal path tracing, which is nominally a

sequential process, can be facilitated with a local operator that marks

all points that are less than all but one of their neighbors, a

condition necessary for points lying on the optimal path.

Many other IU algorithms could have been selected as examples;

the parametric correspondence [5] and intrinsic image recovery [21]

techniques developed at SRI are two obvious possibilities. It has been

our experience that, with a little thought, most of the important

algorithms developed throughout the IU community could be adapted to

take advantage of VSP capabilities.
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V OVERVIEW OF DE ANZA IP-5000

VSPs with the capabilities of our generic design, while

technologically feasible, have yet to be produced commercially. De Anza

System's IP-5000 perhaps comes closest. This product was designed in

1976, partially in response to specifications from SRI, similar to those

in Section III A, and partially in response to requirements for the

TEXAC texture analyzer proposed by Robert Ledley of the National

Biomedical Research Foundation. In this section we present an overview

of the IP-5000 and then critique it against the generic VSP described in

Section III.

Figure 5 is a simplified data flow diagram of the IP-5000. The

solid-state refresh memory is partitioned into four channels, each

containing an 8-bit image at 512 x 512 resolution. Pairs of channels

can also be processed together as a single 16-bit image for operations

requiring that precision. The random-access MOS memories are dual

ported and can be accessed either by the video processor or a PDP-11

host computer (through memory-mapping hardware). De Anza memory can

thus be used by the PDP-11 as fast bulk storage for sequential

computations.

Image data initially enters a memory channel from either the host

computer or the video digitizer (via the processor). The data stored in

each channel are continuously streamed through dedicated lookup tables

and thence to D/A converters for display. The transformed data are also

routed back to the video processor. A multiplexer at the input of the

processing unit selects which memory channels will serve as operands for

the current computation. A second switch at the output selects which

channels will receive the results. (The contents of other channels

remain unchanged.) Each image channel can be spatially shifted

vertically and horizontally with respect to other channels so that
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complex neighborhood operations can be synthesized, using the processor.

Each channel can also be independently magnified by powers of two, using

pixel replication.

Figure 6 is a simplified functional diagram of the video

processing unit. The architecture permits any two of a possible five

arrays to be selected as inputs to each of the two arithmetic/logic

units (ALUs). A fifth input is provided for data from function

generators, although only a constant register is available on SRI's

system.

The ALUs caL compute most unary or binary arithmetic or loC -cal

functions of their input in real time. They can operate independently

or in a pipelined mode, where the output of the lower ALU at a given

image location determines which of two Op Codes will be executed by the

upper ALU at the corresponding point in its input stream. Such

pipelining allows conditional executions and is also used for carry

propagation when performing 16-bit arithmetic.

The outputs of both ALUs can be routed to any of the four memory

channels. For flexibility, the ALU outputs are combined in a shifter

array that permits up/down shifts, end around or tested for overflow,

either as a 16-bit word or two 8-bit bytes.

A 32-bit mask register permits the shift register output to be

written selectively into memory planes of the designated output

channels. Moreover, results are written only for those pixel locations

contained within a specified rectangular window and enabled in a mask

plane. (The mask is obtained from the high-order bit of the lookup

table connected to the fourth image channel and can thus correspond to

any of up to 256 distinct subregions.)

For statistica gathering and related applications, the upper ALD

result for each enabled pixel is accumulated over the image; an event

counter, connected to the carry-out of the lower ALU, can be used to

keep track of the number of pixels contributing to the accumulated

total.
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1 . 'omrarison of 1.e Anza and (,eneric VP

Table contrasts specific design feature; of the e Anza%

p rocessor anA the generic VP described earlier.

Table 4 reveals many surface similarities: both processors

consist essentially of a large amount of image memory; image data can be

spatially offset and routed through lookup tables or an ALT; processing

can be restricted to areas of an image defined by mask overlays and a

rectangular window.

However, there are subtle engineering compromises in the

De Anza design that complicate programming and, in some cases, make

effective algorithm implementations impossible. The most severe

limitations are imposed by the small amount of available memory, rigidly

configured as four R-bit channels, the primitive nature of the ALT, anI

the interlaced scanning raster; the De Anza scans images in a strict

top-bottom, left-right raster, processing only even or odd scan lines on

alternate passes through the image. These limitations interact

perniciously.

Since the De Anza's ALU is limited to 8-bit addition and

subtraction, many single-pixel arithmetic operations must be synthesized

on multiple passes. Such synthesis can require multiple image arrays

for temporary storage. Not only are scarce memory resources strained,

but numeric precision, overflow, and sign are difficult to handle

properly because of the rigid 3-bit structure of the arrays. As one

example, a medium-size convolution operator can easily require 24 bits

of significance, tying up all available memory for temporary storage.

In such situations, auxiliary images must be stored on disk, which

incurs a severe performance penalty.

The ALU's single accumulator makes statistical computations

such as histograms exceedingly slow (1 bin/pass); and x,y coordinate

values are not available for computation of moments. Moreover, the

architecture precludes adding processors specialized for such functions.
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Table 4

COMPARISON OF GENERIC VSP AND DE ANZA DESIGNS

Generic VSP De Anza IP-5000

Processor Architecture

Flexible bus structure Fixed data flow, routed
connecting memory with general thru a single processor
and special-purpose processors

Memory Architecture

Stack of bit-planes Four 8-bit channels
organizable into image
channels with variable
precision/pixel

Noninterlaced raster scan, Interlaced raster scan
reversible scan directions (strict top-bottom,

left-right)

3 x 3 local window accessible Single pixel accessible

Zoom and scroll Zoom and scroll

Processor boxes

Lookup tables Single 256 x 8-bit
Multiple 512 x 9-bit tables table/channel

Function boxes Constant register

General-purpose processor Primitive ALU:
with full complement of 8-bit add/sub/logical,
32-bit arithmetic, logical, (no sign bit) + shift;

test and compare operations 2-way conditional op-

and 256 internal registers code selection

Statistical accumulator
and event counter,
readable only by the
host processor

Mask plane and window Mask plane and window
registers registers
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Propagation algorithms cannot be implemented reasonably. They are

excluded by numerous factors: the need for multiple passes to

synthesize complex pixel operations, resulting in exponential growth in

computing time; the absence of temporary storage in the ALI, needed to

propagate information left to right across an image; the field interla'ce

scan pattern, which makes it hard to propagate information top-bottom

down an image; and the inability to reverse scan direction, which

excludes algorithms requiring both a forward and backward pass.

Statistics and propagation aside, the IP-%DO0 is well suited

for many single-pixel and local neighborhood operations. Simple

functions such as adding or logically combining images in the ALU and

scaling images in lookup tables are efficiently implemented. Such

operations support a wide variety of tasks; for example, noise reduction

(averaging multiple TV frames), real-time photometric camera correction

(subtracting a reference image and scaling the result in a lookup

table), intensity transformations (e.g., mapping linearly quantized gray

values onto a log scale), and multispectral classification (subtracting

logarithmic images and classifying the resulting ratios using a lookup

table).

Local 3 x 3 binary neighborhood operations (e.g., thinning and

thickening) can be implemented in nine passes by converting spatial

patterns into an equivalent image, and passing that image through a

lookup table, as described for the generic VSP. Local arithmetic

operations (e.g., spatial derivatives, median filter) can also be

handled as in the generic processor, except for complications that may

arise due to the simplicity of the ALU and the limited memory capacity

and precision.

Convolution and correlation can be synthesized in multiple

passes (one pass/mask element), as described for the generic processor,

again subject to memory limitations.
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VI EXPFRIMENTAL RESULTS

A. Introduction

A set of representative image-processing algorithms were selected

for experimental evaluation on the De Anza processor. The algorithms

were selected for their cartographic utility and the range of De Anza

features they illustrate.

B. Work Station

The work station used in the experiments is shown in Figure 7. Thle

camera and light stage on the left provide an on-line source of ima , erv,

which is displayed on the top black and white monitor. igiti :e!

imagery from De Anza memory is displayed on the lower color monitor,

which features a 19-in., high-resolution shadow mask CRT manufactured by

Mitsubishi. A joystick and conventional computer terminal complete the

station.

C. Single-Pixel Functions

Simple arithmetic and loqical functions of a single pixel in one or

more images can be performed on the De Anza in one pass. A number of

such operators were implemented to gain familiarity with the hardware,

including thresholding and image scaling, which are performed usinr

lookup tables, and image addition and subtraction, which are performed

in the ALU.

We also implemented a double-precision (16-bit) arithmetic packare,

using the dual ALIJ architecture of the De Anza processor. Two imn,'es

serve as accumulators, storing the high- and low-order bytes,

respectively. To illustrate double-precision operations, suppose an -

bit image was to be added to a 16-bit accumulated sum. The lower Al,!'
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would form the sum of the addend image and the low-order byte of the

accumulator image. The upper accumulator would sum the high-order

accumulator byte with any carry generated by the lower ALl!. Double- and

even triple-precision sums, formed in an additional pass, are used

extensively in convolution and correlation operations described later.

D. Real-Time Image Enhancement

The single-pixel operations described in the preceding section were

used to improve the image quality obtainable from a TV camera by

reducing noise, increasing gray-level resolution, and compensating for

photometric nonuniformities.

Noise was reduced by summing successive frames from the 6-bit

camera digitizer into a 16-bit (double-precision) accumulator image.

Averaging n frames had the anticipated effect of reducing the standard

deviation of intensity over a blank field by a factor of 1/IVfnT.

Gray-level resolution was increased from 6 bits to 8 bits, using a

feature of the digitizer that allows comparator levels to be offset by a

fraction (1/4, 1/2, and 3/4) of the least significant bit under program

control. The sum of four frames at offsets of 0, 1/4, 1/2, and 7/4,

respectively, increases the effective resolution of the 6-bit digitizer

to 9 bits. Typically, 64 frames are summed, 16 at each offset, to

obtain a low-noise, 8-bit image.

The principal photometric nonuniformity in vidicons is a systematic

shading across the image due to scan nonlinearities. This artifact is

clearly evident in Figure 8, which was obtained by scrolling an image

array (with wraparound) so that the left and right edges of a test

pattern are seen in juxtaposition. To minimize shading and other

photometric nonuniformities, a noise-reduced image array x is subjected

to the transformation:

X -B
--- x 256

W-B
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where I is the corrected image array, B is an image array of a blank

field (obtained with the lens cap on the camera), and W is an image of a

uniform white field. Sca'ing by 256 restores contrast.

This photometric correction was implemented using both the De Anza

ALU and tho PDP-11 host processor. We first digitized low-noise, 8-bit

images of a blank field (B) and a white field (W), as previously

described. Difference images (X-B) and (W-B) were then computed in the

De Anza ALU and subsequently divided in the PDP-11 ALU, which accessed

De Anza memory via the memory-mapping hardware. The resulting ratio

image was then scaled (by 256) by passing it through a lookup table.

The division could, in principle, have been performed in the De Anza

ALU. However, it would have required at least eight passes through the

image and would have involved a sibstantial amount of programming effort

to maintain the required arithmetic precision. Figure 9 shows the

improvement resulting from applying the photometric correction to the

test pattern image of Figure 8.

E. Unsharp Masking

Unsharp masking was implemented as an example of hybrid optical-

digital processing. An image was first read into a De Anza image array.

The camera was then defocused to obtain an optically low-pass filtered

image. This low-passed image was subtracted in the ALU from the

original to produce a high-frequency, enhanced image.

F. Edge Detection

Simple vertical and horizontal edge detectors were implemented,

each requiring two passes. In the first pass the image is copied into

another array through the ALU. On the second pass, the copy is scrolled

horizontally (or vertically) by one or two pixels and subtracted in the

ALU from the original.
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G. Convolution

The convolution of an image with an nxn mask can be implemented in

n2 passes. In each pass, the input image is spatially shifted and

multiplied in a lookup table by the weight at the corresponding mask

position. The resulting product is then summed (or subtracted,

depending on sign of the weight) into a 16-bit accumulator array. If

additional precision is required, the convolution algorithm can be

extended to 16-bit weights and 24-bit accumulation; two passes per mask

point are required (see Figure 10). First, a lookup table is

initialized to multiply the input image by the low-order 8 bits of the

current weight. The result is summed in the low-order 16 bits of a 3-

channel accumulator image. In the second pass, the lookup table is used

to multiply by the high-order 8 bits of the current weight and the

results summed with the high-order 16 bits of the accumulator. The

high-order channel of the 24-bit sum will nominally contain the most

significant information. However, in many cases it will contain all

zeros or all ones. In such cases, a significant display can be obtained

by performing a logical left shift in the ALU shift register, on the

most significant 16 bits of the accumulator array. The amount of shift

is the smallest needed to obtain an 8-bit image where some significant

percentage of pixels have different values for their high-order bit.

H. Correlation

Unnormalized correlation for matched filtering was implemented

using the same approach as convolution; i.e., shifting the input image,

scaling it in a lookup table by the weight at that corresponding mask

position, and summing into an accumulator image. To demonstrate matched

filtering, a PDP-11 program was written that allows a small square mask

to be interactively positioned in an image using the joystick. The

De Anza processor then performs a correlation using as weights the pixel

values in the mask.

In Figure 11 a mask has been positioned on a diagonal line sloping

downward left to right. Figure 12 is the result of correlating the test
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FIG'URf 12 RESULT OF CORRELATING FIGURE 11 WITH MASK REGION
DEFINED BY SMALL WHITE BOX (BRIGHTNESS DENOTES
DEGREE OF CORRELATION)



pattern image with this diagonal line mask, with degree of correlation

represented by brightness. Similarly, Figure 14 is the result of

correlating an aerial image with a mask array taken from the plowed

field (Figure 13).

The most sophisticated application of correlation to date on the

De Anza was a fast implementation of David Marr's theory of edge

detection [22]. In Marr's theory, edges correspond to zero crossings in

the band-pass function that results when an image is convolved with a

mask whose values represent the difference of two concentric, two-

dimensional Gaussians, with widths in the ratio 1:1.7. (This mask is a

center surround operator resembling a Laplacian.) Various size masks

are used, the smallest of which contains nearly 1,000 pixels. Masks of

this size require maintaining a full 24 significant bits of intermediate

results during convolution. Results of zero crossing edge detection

were identical in appearance with those in Marr's paper.

I. Interactive Overlay Generation

An important function in military geographic intelligence is the

generation of overlays that delimit specific areas of an image, such as

areas of vegetation, trees, or concrete. The creation of such overlays

can be partially automated, using the interactive image display and

high-speed processing capabilities found in the De Anza. Figure 16, for

example, is a shadow overlay, produced by passing the image in Figure 15

through a lookup table initialized to emphasize dark areas. Figure 17

is a vegetation overlay, produced by convolving Figure 15 with a

vertical edge mask. These overlays can now be thresholded and logically

ANDed to produce a new overlay of dark areas with high-frequency content

that are characteristic of trees.

The quality of the above overlays could possibly be improved

through use of additional spatial and textured operators. The

processing speed of the De Anza, coupled with its immediate visual

feedback, encourages an interactive approach to overlay generation, in

which empirically determined combinations of image operators are used to

delimit particular scene features.
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c1r-iQF 11 AFRIAL VIEW OF PLOWED FIELD

FIGURE 14 RESULT OF CORRELATION WITH A MASK TAKEN FROM
FIGURE 13 (THE UPPER FIELD IS DENOTED BY THE

SMALL WHITE BOX SUPERIMPOSED ON THIS FIGURE)
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FIGURE 15 A TEST IMAGE TO ILLUSTRATE INTERACTIVE OVERLAY

GENERATION

FIGURE 16 A SHADOW OVERLAY PRODUCED BY THRESHOLDING
IN FIGURE 15 TO EMPHASIZE DARK AREAS
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FIGURE 17 A VEGETATION OVERLAY PRODUCED BY CONVOLVING
FIGURE 15 WITH AN EDGE MASK



VII DISCUSSION

Vz7Ps provide a cost-effective means for performing any image-

processing function that can be implemented with local parallel

owrations. Essentially, this class includes all commonly used low-

level algorithms (with the exception of geometric transforms and

sequential line trackers), as well as the most computationally intensive

parts of many higher-level image-understanding algorithms.

A VSP simulates a parallel-array processor at a fraction of the

cost by streaming i-age data at video rates through a single processing

unit. Throughputs comparable to those of a peripheral parallel

processor such as Staran (typically two to three orders of magnitude

faster than a general-purpose computer) are achieved by keeping the

entire image in high-speed memory, thus avoiding I/O bottlenecks.

VSP systems evolved from image displays by adding limited

processing capabilities to existing memory resources. The De Anza IP-

5000 is one of the most advanced such systems available today. It can

synthesize most single-pixel and local neighborhood operations, with the

no+able exception of certain global statistics (e.g., histograms and

moments) and propagation algorithms (e.g., distance transforms).

However, many operations require an excessive nuimber of passes through

the image and excessive temporary storage to implement. Moreover,

programming is done at the hardware level and is very difficult.

The existing De Anza design can be refined to ameliorate most of

the problems associated with storage requirements and programming

difficulty. First, the primitive ALU should be replaced with a full 16-

bit processor that can perform 8-bit signed operations, including

multiplication and division in a single-frame time. Accumulators and

temporary registers must be added for statistics calculations; or,

alternatively, a separate statistics processor should be installed.
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Additional image memory is needed to accommodate temporary result:: that

require high precision. With these improvements, many multipas:s

operations could be streamlined to one or a few passes. Tqually

important, programming could be elevated from concerns about sig;n,

overflow, and precision to a level concerned with manipulation of image

arrays. However, to handle propagation algorithms, the I P-5©O'D  would

have to be substantially redesigned to more clos,,ly resemble the generic

VSP.

Proiagation algorithms would require a bus structure to accommodate

specialized processing units (e.g., adder trees) capable of processin '

all pixels in a local neighborhood in a one-pixel interval. The memory

architecture would also have to be modifiud to provide simultaneous

access to a 3 x 3 window at each location, to allow raster scans in

arbitrary directions, and to eliminate the field interlace that

sequentially processes alternate lines.

A generic VSP incorporating the above refinements could be built by

many of the leading display manufacturers. Technological feasibility

has, indeed, already been demonstrated by the TOSPICS System

manufactured by Toshiba. However, TOSPICS is priced out of the market

because it is based on obsolete memory technology.

At this point, it is appropriate to address a fundamental

limitation inherent in the design of VSPs: the strict video raster

format of memory access that subordinates processing to display refresh

and so greatly complicates the implementation of functions such as

propagation, geometric transforms, and sequential edge trackers.

The raster format has two drawbacks. First, it requires that all

processing be completed for each pixel location within a strict 100-nsec

window. This constraint not only leads to complicated and expensive

high-speed processing units for propagation algorithms that must be

completed in one pass, it also tends to squander memory resources.

Whenever a computation cannot be completed in one pass, temporary

results must be stored for every pixel. TI.is requires a whole image

stack, frequently one with many planes to maintain precision. By
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contrast, if the scan were slowed so that processing could be completed

at each point before moving on, then temporary results would never have

to be stored for more than one pixel location at a time. The second

drawback with raster processing is the strictly sequential ordering of

memory access. This effectively precludes algorithms such as geometric

image transforms that require random access to image arrays.

One way of liberating complex processing from the constraints of

video refresh without abandoning the many good features of VSPs is to

exploit the De Anza's dual-ported memory. The present PDP-11/34 host

computer could be replaced by a powerful general-purpose processor such

as a DEC VAX or Motorola M68000. Both these computers have large (32-

bit) address spaces that allow direct access to De Anza's bulk image

store. They are also user-microprogrammable, so that array access

computations can be handled efficiently in micro code. Any algorithm

involving spatial context, nonuniform memory access, or excessive

temporary storage could then be implemented on the host. Meanwhile, the

image memories could still be accessed through the second part in raster

mode for both image display and simple stream processing.

Looking further ahead, one can ask how emerging developments in

solid-state technology are likely to impact image processor design. The

size and geometric regularity of image rasters and the uniformity and

locality of most operations make image processing an ideal candidate for

VLSI implementation. For the first time, massive parallel-array

processors in the style of Staran and Illiac IV may be practical on a

sufficient scale to process an entire image at once. The beginnings of

such developments are already evident in ARPA-sponsored research on

smart sensors [23] and emerging designs for cellular image-processing

architectures. However, general-purpose systems suitable for image-

processing research are still far off.
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VIII CONCLUSION

VSPs provide the most cost-effective means for implementing local

image-processing operations with today's technology. Currently

available systems, however, are still primitive; and substantial

opportunities remain for further development. One promising approach is

a hybrid design, based on a dual-ported memory architecture, that

integrates the generic VSP outlined in this report with a powerful

general-purpose processor, such as a VAX or M68000.
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